MatematikaALJABAR Tuliskan soal cerita dari persamaan 28 - n = 5. Model Matematika dan Penerapan Persamaan pada Soal Cerita PERSAMAAN DAN PERTIDAKSAMAAN LINEAR SATU VARIABEL ALJABAR Matematika Cek video lainnya Teks video Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika Fisika Kimia yangada. Kerjakanlah soal uji kompetensi dengan cermat agar Kalian bisa lebih paham dan terampil. E. Materi Pembelajaran Modul ini terbagi menjadi 4 kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi. Pertama : Fungsi Eksponen (4 JP) Kedua : Persamaan dan Pertidaksamaan Eksponen (4 JP) Jadipersamaan lingkaran x 2 2 y 5 2 2 2 atau x 2 2 y 5 2 4. X 4 2 y -3 2 3 2. Contoh Soal Dan Pembahasan Persamaan Lingkaran Kelas 11 Download File Guru. X32 y 22 9 x2 y2 6x4y4 0 15. Persamaan lingkaran berpusat di titik 2 3 dan melalui titik 5 -1 adalah. 20200514 Contoh soal cerita tentang lingkaran berserta jawabannyaSoal soal persamaan Marikita simak contoh soal berikut untuk lebih memahami frekuensi dan periode. Lihat Foto. Riak air merupakan salah satu contoh fenomena adanya gelombang. (Rafael) Sebuah benda bergerak dalam selang waktu 60 sekon dan membuat 6000 getaran. Tentukanlah besar frekuensi dan periodenya. Diketahui: t = 60 sekon. Bukancuman itu aja, teman teman juga boleh tanya berbagai soal yang sangat rumit sekalipun disini. Nah tentunya kakak-kakak dari tim Solusi Soal akan membantu menjawab. Hari ini kita akan membicarakan tentang soal yang sering ditanyakan yaitu Tuliskan persamaan setara unsur reaksi berikut! a. Padaintinya nilainya akan positif jika fungsi dalam tanda mutlak lebih dari nol. Contoh soal cerita persamaan nilai mutlak. Sifat pertidaksamaan nilai mutlak. Soal dan pembahasan persamaan nilai mutlak. Rata rata suhu normal manusia adalah 36 circ c. 16 soal pilihan ganda tentang persamaan dan pertidaksamaan nilai mutlak. RhR5Ota. Tuliskan soal dongeng dr persamaan 28β€”n=5Tuliskan soal kisah dr persamaan 28β€”n= soal dongeng dr persamaan 28-n=5tuliskan soal cerita dr persamaan 28-n=5tuliskan soal kisah dr persamaan 28-n=5 n yaitu 23 alasannya 28 – 23 =5 Tuliskan soal kisah dr persamaan 28β€”n=5. suatu hari ayah membeli kue berjuamlah 28 untuk diberikan anak paling sulungnya tiba2 si bungsu tahu & tidam terima , dia mencuri kue sehingga tinggal 5, berapa kue yg di curi si bungsu? tuliskanlah soal dongeng dr persamaan 28-n=5 Bab Operasi BilanganMatematika Sekolah Dasar Kelas V Ayah mempunyai 28 buah mangga. Ayah memberikan sebagian buah mangga pada tetangganya & tersisa 5 buah mangga. Berapa buah mangga yg ayah berikan pada tetangganya ? misal, buah mangga yg diberikan ke tetangga = n 28 – n = 528 – 5 = n23 = nn = 23 Jadi, buah mangga yg ayah berikan ke tetangga yakni 23 buah tuliskan soal cerita dr persamaan 28-n=5 Andi mempunyai 28 buah mangga. Andi memasarkan sejumlah buah mangga pada Ikhsan & tersisa 5 buah. Berapa buah mangga yg dijual Andi pada Ikhsan? tuliskan soal kisah dr persamaan 28-n=5 28-n=5 -n=5-28 -n=-23 n=23 Semoga menolong,selamat belajar… Komentar Verified answer Bab Operasi BilanganMatematika SD Kelas VAyah mempunyai 28 buah mangga. Ayah memberikan sebagian buah mangga kepada tetangganya dan tersisa 5 buah mangga. Berapa buah mangga yang ayah berikan kepada tetangganya ?misal, buah mangga yang diberikan ke tetangga = n28 - n = 528 - 5 = n23 = nn = 23Jadi, buah mangga yang ayah berikan ke tetangga adalah 23 buah 3 votes Thanks 4 Jawab Misal panjang = p, dan lebar = l,p - l = 8l = p - 8 k = 2p + l32 = 2p + p - 832 = 4p - 164p = 48p = 12l = 4 Jadi, persamaan yang bisa digunakan untuk menentukan ukuran panjang persegi panjang adalah l = p - 8 dan k = 2p + l Soal nomor 9 Tuliskan soal cerita dari persamaan 28 – n = 5 Jawab Ewang memiliki 28 permen dan membagikan kepada teman-temannya sebanyak n permen, sisa permen ewang sekarang adalah 5 permen. Soal nomor 10 Suatu segitiga diperoleh dengan cara memotong persegi panjang. Tinggi segitiga adalah setengah dari panjang s pada persegi panjang. Luas daerah yang diarsir adalah 84 cm persegi. Tulis suatu persamaan yang dapat kalian gunakan untuk menentukan panjang s Jawab L = 14 x s - 1/2 x 14 x s/284 = 21s/2s = 8 Jadi, persamaan yang digunakan untuk mencari nilai s adalah L = 14 x s - 1/2 x 14 x s/2. Baca juga Kunci Jawaban Matematika Kelas 7 Halaman 237, Cara Menyederhanakan Bentuk Aljabar dengan Benar * Disclaimer Artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak. Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa. Muhammad Alvian Fakka QuestionGauthmathier8182Grade 10 YES! We solved the question!Check the full answer on App GauthmathGauth Tutor SolutionUniversity of LagosMaster's degreeAnswerExplanationFeedback from studentsWrite neatly 62 Excellent Handwriting 55 Correct answer 50 Detailed steps 45 Easy to understand 37 Clear explanation 18 Help me a lot 16 Does the answer help you? Rate for it!Gauthmath helper for ChromeCrop a question and search for answer. Its faster!Still have questions? Ask a live tutor for help live Q&A or pic step-by-step access to all gallery Tutor Now Berikut ini merupakan soal dan pembahasan materi persamaan dan fungsi kuadrat. Tipe soalnya berupa soal aplikasi soal cerita yang diambil dari berbagai referensi. Semoga bermanfaat. Baca Juga Soal dan Pembahasan – Persamaan Kuadrat Baca Juga Soal dan Pembahasan – Fungsi Kuadrat Baca Juga Soal dan Pembahasan – Persamaan Kuadrat Versi HOTS/Olimpiade Quote by Fiersa Besari Yang diperbesar itu hati, bukan kepala. Yang diperkuat itu tekad, bukan alasan. Yang diturunkan itu ego, bukan harga diri. Yang diperbaiki itu cara bersikap, bukan cara berbohong. Bagian Pilihan Ganda Soal Nomor 1 Sebuah lapangan berbentuk persegi panjang. Diketahui panjangnya dua kali dari lebarnya. Pada tepi sebelah luar tiga sisi lapangan tersebut dibuat jalan yang lebarnya $2$ meter. Jika luas seluruh jalan yang diarsir pada gambar adalah $128~\text{m}^2$, maka luas lapangan tersebut adalah $\cdots \cdot$ A. $748~\text{m}^2$ D. $450~\text{m}^2$ B. $512~\text{m}^2$ E. $200~\text{m}^2$ C. $480,5~\text{m}^2$ Pembahasan Perhatikan gambar berikut. Diketahui $\begin{aligned} L_{ABCD} & = 2l+4l+2 \\ & = 2l^2 + 8l + 8 \\ L_{\text{Lapangan}} & = 2l \cdot l =2l^2 \\ L_{\text{Jalan}} & = 128~\text{m}^2 \end{aligned}$ Luas lapangan dapat ditentukan dengan mengurangkan luas $ABCD$ dengan luas jalan. Secara matematis, ditulis $\begin{aligned} L_{\text{Lapangan}} & = L_{ABCD} -L_{\text{Jalan}} \\ 2l^2 & = 2l^2 + 8l + 8 -128 \\ 8l & = 120 \\ l & = 15~\text{m}. \end{aligned}$ Diperoleh lebarnya $15$ meter. $L_{\text{Lapangan}} = 2l^2 = 215^2 = 450~\text{m}^2.$ Jadi, luas lapangan itu adalah $\boxed{450~\text{m}^2}$ Jawaban D [collapse] Soal Nomor 2 Suatu peluru ditembakkan ke atas. Tinggi peluru pada saat $t$ detik dirumuskan oleh $ht = 40t -5t^2$ dalam satuan meter. Tinggi maksimum yang dapat ditempuh oleh peluru tersebut adalah $\cdots \cdot$ A. $75$ meter D. $90$ meter B. $80$ meter E. $95$ meter C. $85$ meter Pembahasan Diketahui fungsi kuadrat $ht = 40t-5t^2$ dengan $a = -5, b = 40, c = 0.$ Tinggi maksimum peluru itu dapat ditentukan dengan menggunakan rumus nilai maksimum grafik fungsi kuadrat, yaitu $\begin{aligned} y_{maks} & = \dfrac{D}{-4a} \\ & = \dfrac{b^2-4ac}{-4a} \\ & = \dfrac{40^2 – 4-50}{-4-5} \\ & = \dfrac{ = 80~\text{m}. \end{aligned}$ Jadi, tinggi maksimum yang dapat dicapai peluru adalah $80$ meter. Jawaban B [collapse] Soal Nomor 3 Seorang pemain bola basket mempunyai tinggi $180$ cm, sedangkan tinggi ring adalah $3$ meter. Pemain basket tersebut melempar bola pada jarak sejauh $4$ meter dari posisi horizontal ring dan diasumsikan posisi awal bola tepat berada di atas kepalanya. Ternyata lemparannya mempunyai tinggi maksimum $3,8$ meter dan secara horizontal berjarak $2,5$ meter dari pemain. Jika trayektori lintasan lemparannya berbentuk parabola, maka bola tersebut akan tepat masuk ke ring saat $\cdots \cdot$ ketinggian maksimum lemparan dinaikkan $25$ cm ketinggian maksimum lemparan dinaikkan $12,5$ cm ketinggian maksimum lemparan diturunkan $12,5$ cm ketinggian maksimum lemparan diturunkan $25$ cm ketinggian maksimum lemparan diturunkan $37,5$ cm Pembahasan Sketsakan gambar dalam bidang koordinat seperti berikut. Pemain basket diwakili oleh tanda panah berimpit dengan sumbu-$Y$ dengan panjang $1,8$ meter. Berdasarkan informasi dan menyesuaikan gambar tersebut, diketahui parabola melalui titik $4; 1,2$ serta memotong sumbu-$X$ di dua titik, yaitu $0, 0$ dan $5, 0$. Fungsi kuadratnya dinyatakan oleh $\begin{aligned} y & = ax-x_1x-x_2 \\ 1,2 & = a4-04-5 \\ 1,2 & = a4-1 \\ a & = -\dfrac{1,2}{4} = -0,3. \end{aligned}$ Artinya, $y = -0,3xx-5.$ Absis titik puncak di $x_p = 2,5$. Substitusi untuk mencari nilai $y_p.$ $\begin{aligned} y_p & = -0,3xx-5 \\ & = -0,32,52,5-5 \\ & = -0,32,5-2,5 = 1,875 \end{aligned}$ Tinggi bola dari permukaan adalah $1,8+1,875 = 3,675~\text{m}.$ Padahal, diketahui bahwa tinggi maksimum bola adalah $3,8~\text{m},$ artinya ketinggian maksimum lemparan harus diturunkan $3,8-3,675~\text{m} = 0,125~\text{m}$ atau setara dengan $\boxed{12,5~\text{cm}}$ Jawaban C [collapse] Soal Nomor 4 Tarif telepon rumah yang dibayarkan oleh pelanggan pada suatu wilayah selama satu bulan dirumuskan dengan durasi telepon dalam menit selama satu bulan dikalikan dengan tarif telepon, lalu ditambah dengan biaya berlangganan selama satu bulan. Tarif telepon di wilayah tersebut senilai dengan $250$ lebihnya dari durasi telepon dalam menit. Jika tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dinyatakan dalam $y$, durasi telepon dalam menit dinyatakan dengan $x$, biaya berlangganan selama sebulan dinyatakan dalam $z$, serta biaya berlangganan selama satu bulan sebesar maka persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\cdots \cdot$ A. $y = x^2+50x+ B. $y = x^2+250x + C. $y = x^2+ D. $y = x^ E. $y = -x^2+250x+ Pembahasan Misalkan $$\begin{aligned} y & = \text{tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah} \\ x & = \text{durasi telepon dalam menit} \\ z & = \text{biaya berlangganan selama satu bulan} \end{aligned}$$Rancangan model matematika Tarif telepon rumah yang dibayarkan oleh pelanggan pada suatu wilayah selama satu bulan dirumuskan dengan durasi telepon dalam menit selama satu bulan dikalikan dengan tarif telepon, lalu ditambah dengan biaya berlangganan selama satu bulan $$y = x \cdot \color{red}{\text{tarif telepon rumah per menit}} + z$$ Tarif telepon di wilayah tersebut senilai dengan $250$ lebihnya dari durasi telepon dalam menit $$\color{red}{\text{tarif telepon rumah per menit}} = x + 250$$ Biaya berlangganan selama satu bulan sebesar $z = Persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah menjadi $$\begin{aligned} y & = x \cdot x + 250 + \\ y & = x^2 + 250x + \end{aligned}$$Jadi, persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\boxed{x^2 + 250x + Jawaban B [collapse] Soal Nomor 5 Pendapatan pengemudi bus antarkota ditentukan dari besarnya UMR Upah Minimum Regional ditambah dengan hasil kali antara jumlah penumpang dan indeks kepuasan pelanggan setiap bulan. Indeks kepuasan pelanggan di suatu bulan senilai dengan $100$ kurangnya dari jumlah penumpang selama bulan itu. Diketahui harga jasa pengemudi dinyatakan dengan $y$, jumlah penumpang dinyatakan dengan $x$, dan indeks kepuasan pelanggan dinyatakan dengan $z$, serta besarnya UMR di wilayah tersebut sebesar Persamaan pendapatan pengemudi pada bulan tersebut dinyatakan dalam rupiah adalah $\cdots \cdot$ A. $y=x^2+100x+ B. $y=x^2-100x+ C. $y=x^2+ D. $y=x^ E. $y=-x^2+100x+ Pembahasan Misalkan $$\begin{aligned} y & = \text{harga jasa pengemudi} \\ x & = \text{jumlah penumpang} \\ z & = \text{indeks kepuasan pelanggan} \end{aligned}$$Rancangan model matematika Pendapatan pengemudi bus antarkota ditentukan dari besarnya UMR Upah Minimum Regional ditambah dengan hasil kali antara jumlah penumpang dan indeks kepuasan pelanggan setiap bulan $$y = + x \cdot z$$ Indeks kepuasan pelanggan di suatu bulan senilai dengan $100$ kurangnya dari jumlah penumpang selama bulan itu $$z = x-100$$ Persamaan pendapatan pengemudi pada bulan tersebut dinyatakan dalam rupiah adalah $$\begin{aligned} y & = + x \cdot x-100 \\ y & = x^2-100x + \end{aligned}$$Jadi, persamaan tarif telepon rumah yang dibayarkan oleh pelanggan selama satu bulan dalam rupiah adalah $\boxed{x^2-100x + Jawaban B [collapse] Bagian Uraian Soal Nomor 1 Dua orang berangkat pada waktu yang sama dan dari tempat yang sama, serta bepergian melalui jalan-jalan yang saling tegak lurus. Seseorang bepergian dengan kecepatan $4$ km/jam lebih cepat dari yang lainnya. Setelah $2$ jam mereka terpisah pada jarak $40$ km. Tentukan jumlah jarak yang ditempuh kedua orang tersebut. Pembahasan Misalkan $A$ dan $B$ adalah nama dua orang tersebut. Kecepatan $A$ dimisalkan $x$ km/jam, berarti kecepatan $B$ adalah $x+4$ km/jam. Jarak tempuh $A$ selama $2$ jam adalah $s_A = v_A \times 2 = 2x~\text{km}.$ Jarak tempuh $B$ selama $2$ jam adalah $\begin{aligned} s_B & = v_B \times 2 \\ & = x+4 \times 2 \\ & = 2x+8~\text{km}. \end{aligned}$ Sekarang perhatikan sketsa berikut. Lintasan $A$ dan $B$ ternyata membentuk sebuah segitiga siku-siku sehingga nilai $x$ dapat ditentukan dengan Teorema Pythagoras. $\begin{aligned} 2x + 8^2 + 2x^2 & = 40^2 \\ 4x^2 + 32x + 64 + 4x^2 & = 1600 \\ 8x^2 + 32x-1536 & = 0 \\ x^2+4x-192 & = 0 \\ x+16x-12 & = 0 \end{aligned}$ Diperoleh $x = -16$ atau $x = 12$. Karena $x$ mewakili besarnya kecepatan, nilainya tidak mungkin negatif. Jadi, diambil $x = 12.$ Jumlah jarak yang ditempuh $A$ dan $B$ adalah $\begin{aligned} s_A + s_B & = 2x + 2x + 8 \\ & = 4x + 8 \\ & = 412 +8 = 56~\text{km}. \end{aligned}$ [collapse] Soal Nomor 2 Diketahui fungsi permintaan suatu produk adalah $Q_d = 30-p^2$ dan persamaan penawaran $Q_s = 4p^2 -95$ dengan $p$ = harga produk. Gambarlah sketsa grafik permintaan dan penawaran pada bidang Kartesius; Tentukan tingkat harga dan jumlah produk ketika terjadi keseimbangan pasar dengan menggunakan cara grafik; Tentukan tingkat harga dan jumlah produk ketika terjadi keseimbangan pasar dengan menggunakan cara menyamakan $Q_d= Q_s.$ Pembahasan Jawaban a Diketahui fungsi permintaan $Q_d=30-p^2.$ Bentuk rumus fungsi di atas dapat disesuaikan dengan variabel pada bidang Kartesius, yakni $fx = y = 30-x^2$. Titik potong grafik terhadap sumbu-$Y$ terjadi ketika $x = 0$. Substitusi menghasilkan $y = 30-0^2=30.$ Jadi, titik potongnya berkoordinat $0, 30.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{0}{2-1} = 0.$ Substitusi $x=0$ menghasilkan $y=30$. Ternyata koordinat titik puncak grafik sama dengan koordinat titik potong grafik terhadap sumbu-$Y,$ yaitu $0, 30$. Tentukan beberapa koordinat titik lain yang dilalui grafik. $$\begin{array}{ccccc} \hline x & -2 & -1 & 1 & 2 \\ \hline y & 26 & 29 & 29 & 26 \\ \hline x,y & -2, 26 & -1, 29 & 1, 29 & 2, 26 \\ \hline \end{array}$$Posisikan titik-titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke bawah karena koefisien $x^2$ negatif. Diketahui fungsi penawaran $Q_s=4p^2-95.$ Bentuk rumus fungsi di atas dapat disesuaikan dengan variabel pada bidang Kartesius, yakni $gx = y = 4x^2-95.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika $x = 0$. Substitusi menghasilkan $y = 40^2-95 = -95.$ Jadi, titik potongnya berkoordinat $0, -95.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{0}{24} = 0.$ Substitusi $x=0$ menghasilkan $y=-95$. Ternyata koordinat titik puncak grafik sama dengan koordinat titik potong grafik terhadap sumbu-$Y,$ yaitu $0, -95$. Tentukan beberapa koordinat titik lain yang dilalui grafik. $$\begin{array}{ccccc} \hline x & -2 & -1 & 1 & 2 \\ \hline y & -79 & -91 & -91 & -79 \\ \hline x,y & -2, -79 & -1, -91 & 1, -91 & 2, -79 \\ \hline \end{array}$$Posisikan titik-titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke atas karena koefisien $x^2$ positif. Jika kedua kurva digambarkan pada satu bidang Kartesius, maka akan terlihat seperti gambar di bawah. Jawaban b Keseimbangan pasar terjadi saat kedua kurva grafik berpotongan di kuadran pertama. Untuk menentukannya menggunakan cara grafik, sebaiknya gunakan kertas milimeter blok. Tampak pada gambar di bawah, keseimbangan pasar terjadi di titik $5, 5$. Ini berarti tingkat harga dan jumlah produknya adalah $5$. Jawaban c Keseimbangan pasar terjadi saat $Q_d= Q_s$. Dengan demikian, diperoleh $\begin{aligned} 30-p^2 & = 4p^2-95 \\ 5p^2 & = 125 \\ p^2 & = 25 \\ p & = \pm 5 \end{aligned}$ Karena $p$ mewakili harga, nilainya tak mungkin negatif sehingga hanya diambil $p=5.$ Substitusi $p=5$ pada $Q_d$ untuk mendapatkan $\begin{aligned} Q_d & = 30-p^2 \\ & = 30-5^2 \\ & = 30-25 = 5. \end{aligned}$ Jadi, tingkat harga dan jumlah produk saat keseimbangan pasar berturut-turut adalah $p=5$ dan $Q_s = Q_d = 5.$ [collapse] Soal Nomor 3 Berdasarkan catatan bendahara perusahaan, penerimaan total perusahaan dapat diformulakan dengan $P = 20 + 200q -2q^2$ dengan $P$ = penerimaan total dalam puluhan ribu rupiah dan $q$ = banyaknya barang yang diproduksi. Sketsalah grafik penerimaan total perusahaan; Berapa unit barang yang diproduksi agar diperoleh penerimaan total maksimum? Berapakah besar total penerimaan maksimum yang diperoleh? Pembahasan Jawaban a Formula penerimaan total perusahaan itu dapat disesuaikan variabelnya dengan bidang Kartesius, yaitu $fx = y = 20+200x-2x^2.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{200}{2-2} = 50.$ Substitusi $x=50$ menghasilkan $\begin{aligned} y & = 20+20050-250^2 \\ & = 20+10000-5000 = 5020. \end{aligned}$ Koordinat titik puncak grafik adalah $50, 5020.$ Posisikan titik ini pada bidang Kartesius, lalu hubungkan membentuk parabola yang terbuka ke bawah karena koefisien $x^2$ negatif. Jawaban b Unit barang yang diproduksi agar diperoleh penerimaan total maksimum dinyatakan oleh persamaan sumbu simetri grafik, yakni $x = q = 50$. Jawaban c Besar total penerimaan maksimum yang diperoleh tercapai ketika $x = q = 50$, yakni $ dalam satuan puluhan ribu rupiah atau $\boxed{\text{Rp} [collapse] Baca Juga Soal dan Pembahasan – Sistem Koordinat Kartesius Soal Nomor 4 Diketahui fungsi penawaran sejenis barang adalah $y = 3x^2 + 9x + 6$ dengan $y$ adalah harga dan $x$ adalah kuantitas. Gambarkan sketsa grafiknya; Tentukan interval jumlah barang yang ditawarkan; Tentukan interval harga penawaran. Pembahasan Jawaban a Fungsi penawarannya dapat ditulis seperti berikut. $\begin{aligned} y & = 3x^2 + 9x + 6 \\ & = 3x^2 + 3x + 2 \\ & = 3x +1x + 2 \end{aligned}$ Titik potong grafik terhadap sumbu-$X$ terjadi ketika nilai $y = 0$. Substitusi menghasilkan $\begin{aligned} 3x+1x+2 & = 0 \\ \Leftrightarrow x+1x+2 & = 0. \end{aligned}$ Diperoleh $x = -1$ atau $x = -2.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$X$ adalah $-1, 0$ dan $-2, 0.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0.$ Substitusi menghasilkan $y = 30^2 + 90 + 6 = 6.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, 6.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{9}{23} = -\dfrac32.$ Substitusi $x = -\dfrac32$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $$\begin{aligned} y = fx & = 3x^2+9x+6 \\ f\left-\dfrac32\right & = 3\left-\dfrac32\right^2+9\left-\dfrac32\right+6 \\ & = 3 \times \dfrac94 -\dfrac{27}{2} + 6 \\ & = \dfrac{27-54+24}{4} = -\dfrac34 \end{aligned}$$Jadi, titik puncak grafik di $\left-\dfrac32, -\dfrac34\right.$ Plotkan ketiga titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban b Jumlah barang yang ditawarkan tidak mungkin bernilai negatif dan harus berupa bilangan bulat. Untuk itu, intervalnya adalah $x \geq 0$ dengan $x \in \mathbb{Z}$ anggota bilangan bulat. Jawaban c Harga penawaran minimum dicapai saat nilai $x$ terendah berdasarkan interval yang mungkin. Nilai $x$ terendah adalah $x = 0.$ Substitusi pada $y = 3x^2 + 9x + 6$ menghasilkan $y = 30^2+90+6 = 6.$ Jadi, interval harga penawaran adalah $y \geq 6$. [collapse] Soal Nomor 5 Diketahui fungsi permintaan dan fungsi penawaran suatu barang adalah sebagai berikut $D y = x^2 -8x + 10$ $S y = x^2 + 4x -74$ a. Gambarkan grafik fungsi permintaan; b. Gambarkan grafik fungsi penawaran; c. Tentukan harga keseimbangan pasar. Pembahasan Jawaban a Rumus fungsi permintaan pada kasus ini adalah $fx = y = x^2-8x+10.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0$. Substitusi menghasilkan $y = 0^2-80+10 = 10.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, 10.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{-8}{21} = 4.$ Substitusi $x = 4$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $\begin{aligned} fx & = x^2-8x+10 \\ f4 & = 4^2-84+10 \\ y & = 16-32+10 = -6 \end{aligned}$ Jadi, titik puncak grafik di $4, -6.$ Selanjutnya, substitusikan $x = 3$ dan $x = 5$ untuk mencari nilai fungsi permintaan bilangan $3$ dan $5$ dipilih karena berdekatan dengan $4$. $\begin{aligned} fx & = x^2-8x+10 \\ f3 & = 3^2-83+10 = -5 \\ f5 & = 5^2-85+10 = -5 \end{aligned}$ Jadi, grafik melalui titik $3, -5$ dan $5, -5.$ Plotkan keempat titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban b Rumus fungsi penawaran pada kasus ini adalah $fx = y = x^2 + 4x -74.$ Titik potong grafik terhadap sumbu-$Y$ terjadi ketika nilai $x = 0$. Substitusi menghasilkan $y = 0^2+40-74= -74.$ Ini menunjukkan bahwa koordinat titik potong grafik terhadap sumbu-$Y$ adalah $0, -74.$ Persamaan sumbu simetri dirumuskan oleh $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{4}{21} = -2.$ Substitusi $x = -2$ ke rumus fungsi untuk mendapatkan nilai minimum minimum karena koefisien $x^2$ positif sehingga parabola terbuka ke atas. $\begin{aligned} fx & = x^2+4x-74 \\ f-2 & = -2^2+4-2-74 \\ y & =4-8-74= -78 \end{aligned}$ Jadi, titik puncak grafik di $-2, -78.$ Selanjutnya, substitusikan $x = -1$ dan $x = -3$ untuk mencari nilai fungsi permintaan bilangan $-1$ dan $-3$ dipilih karena berdekatan dengan $-2$. $\begin{aligned} fx & = x^2+4x-74 \\ f-1 & = -1^2+4-1-74 \\ & = 1-4-74=-77 \\ f-3 & = -3^2+4-3-74 \\ & = 9-12-74=-77 \end{aligned}$ Jadi, grafik melalui titik $-1, -77$ dan $-3, -77$. Plotkan keempat titik yang ada di sistem koordinat Kartesius seperti gambar di bawah. Hubungkan keempat titik secara mulus berdasarkan jejak parabola. Jawaban c Keseimbangan pasar terjadi ketika grafik fungsi permintaan dan fungsi penawaran berpotongan. Ini berarti $\begin{aligned} D & = S \\ \cancel{x^2}-8x+10 & = \cancel{x^2}+4x-74 \\ -8x-4x & = -74-10 \\ -12x & = -84 \\ x & = 7. \end{aligned}$ Harga keseimbangan pasar dapat dihitung dengan mensubstitusikan $x=7$ pada salah satu fungsi boleh fungsi penawaran, boleh juga fungsi permintaan. Misalkan substitusinya pada fungsi permintaan $D$. $\begin{aligned} fx & = x^2-8x+10 \\ f7 & = 7^2-87+10 \\ & = 49-56+10 = 3. \end{aligned}$ [collapse] Soal Nomor 6 Fungsi permintaan yang dihadapi oleh produsen sebuah produk makanan ditunjukkan oleh $P = 400 + 20q -q^2$, dengan $P$ menyatakan harga permintaan, sedangkan $q$ menyatakan kuantitas jumlah barang. Tentukan harga permintaan jika barang yang ditawarkan sebanyak $5$ unit; Jumlah barang maksimal yang ditawarkan; Tentukan banyaknya barang jika harga permintaan sebesar $464$. Pembahasan Jawaban a Diketahui $P = 400 + 20q -q^2.$ Harga permintaan jika barang yang ditawarkan sebanyak $5$ unit $q = 5$ adalah $\begin{aligned} P & = 400 + 205-5^2 \\ & = 400+100-25 \\ & = 475. \end{aligned}$ Jawaban b Jumlah barang maksimal yang ditawarkan berdasarkan fungsi permintaan $P = 400 + 20q -q^2$ dinyatakan oleh persamaan sumbu simetri fungsi kuadrat tersebut. $x_{\text{maks}} = -\dfrac{b}{2a} = -\dfrac{20}{2-1} = 10.$ Jadi, jumlah barang maksimal yang dapat ditawarkan adalah $\boxed{10}$ unit. Jawaban c Diketahui $P = 400 + 20q -q^2$ dan $P = 464.$ Akan dicari nilai $q$ yang memenuhi persamaan kuadrat yang terbentuk. $\begin{aligned} 400 + 20q -q^2 & = 464 \\ -64 + 20q -q^2 & = 0 \\ q^2 -20q + 64 & = 0 \\ q -4q-16 & = 0 \end{aligned}$ Diperoleh nilai $q = 4$ atau $q = 16.$ [collapse]

tuliskan soal cerita dari persamaan 28 n 5